Article ID Journal Published Year Pages File Type
398788 International Journal of Electrical Power & Energy Systems 2014 13 Pages PDF
Abstract
Microgrid is commonly regarded as an efficient way for integration of distributed generation (DG) in low voltage network. However, the integration method of microgrid in power system for maximum benefit needs to be further promoted. In this paper, a stochastic bidding strategy of microgrid in a joint day-ahead market of energy and spinning reserve service is proposed taking into account of uncertainty of renewable DG units’ output power and load. The stochastic bidding strategy is modeled as bi-level optimization problem and can be divided into two steps. First, Latin Hypercube Sampling (LHS) is utilized for generating microgrid uncertain net power scenarios according to day-ahead uncertain power scenario models, and then reduced by backward scenario reduction technique for less computation. Second, the upper level total bidding profit including bidding revenue, expected imbalance and operation cost is optimized by interior point algorithm in MATLAB for making optimal bids. The expected imbalance and operation cost is calculated by iteratively invoking lower level deterministic unit commitment under each microgrid uncertain net power scenario. The lower level deterministic unit commitment is coded and solved by mixed integer nonlinear programming (MINLP) solver DICOPT in GAMS. Finally, the optimal energy and spinning reserve bids are given by solving the bi-level bidding model. The model is applied to a modified typical low-voltage microgrid and the effectiveness and excellence of proposed strategy is proven by comparing simulation results with traditional deterministic bidding strategy.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,