Article ID Journal Published Year Pages File Type
399074 International Journal of Electrical Power & Energy Systems 2009 5 Pages PDF
Abstract

With the development of communication and information technology over the past decades, Electronic Instrumental Transducer (EIT) and broadband communication network have been prevalent within Substation Automation System (SAS) and power utilities. Since mal-function of EIT and broadband communication network within SAS can produce dangerous erroneous measurements, the risk for the protection system to receive these erroneous measurements and thereafter to mis-operate increase. Pattern identification can be utilized to detect erroneous measurements. In order to achieve satisfying pattern identification precision within time limit imposed by protection systems, Radial Basis Function Neural Network (RBFNN) are investigated in the paper. Orthogonal Least Square (OLS) learning algorithm is used to prune network scale in order to mitigate contradictory requirements of high precision and low time delay. Simulation results show OLS based RBFNN can achieve satisfying performance within limited time.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,