Article ID Journal Published Year Pages File Type
3998 Biochemical Engineering Journal 2009 8 Pages PDF
Abstract

Cells of obligated alkaliphiles Bacillus pseudalcaliphilus 20RF and Bacillus pseudalcaliphilus 8SB isolated from Bulgarian habitats, producers of cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19), were immobilized by three different techniques: on two types of polysulphone membranes; entrapped in agar-gel beads containing magnetite and by nano-particles of silanized magnetite covalently bound on the cell surface. The biocatalysts obtained demonstrated the opportunity for a significantly enhanced CGTase production compared to free cells for a long period of time (10 days semicontinuous cultivation) without impact on their mechanical stability. The cell membrane-biocatalysts exhibited the highest enzyme activity after 240 h repeated batch cultivation and retained 1.3–2.3-fold increase of the CGTase yield compared to free cells at the end of the process. Membrane biocatalysts were applied for a direct cyclodextrin (CD) production. The results obtained demonstrated the possibility of starch conversion into cyclodextrins by immobilized cells without using of crude or purified enzyme. The membrane biocatalysts of both obligated alkaliphiles formed mainly β- and γ-CDs after 6 h enzyme reaction at pH 9.0 of the reaction mixture. Under these conditions, the quantity of γ-CDs was a relative high, to 35–37% of the total CD amount.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , ,