Article ID Journal Published Year Pages File Type
4011408 Experimental Eye Research 2012 8 Pages PDF
Abstract

This study was to determine the potential roles of lens crystallins in the pathogenesis of corneal neovascularization (CorNV) and implications in therapy of CorNV-related diseases. Suture- or chemical burn-induced CorNV in different strains of mice were used. Changes of gene expression patterns were analyzed by microarray, and the results of interesting genes were confirmed by real-time quantitative PCR and Western blot. Mice deficient in αA-crystallin gene were used to evaluate the role of αA-crystallin in the development of CorNV. In some animals, exogenous αA-crystallin proteins were injected around time of CorNV induction. CorNV was assessed by slit-lamp, flat-mounts and histology. In BALB/C mice, the expression of α-, β-, and γ-crystallins were up-regulated at day 5 and returned to baseline level at day 10 of suture-induced CorNV, but remained up-regulated from day 6 to day 14 of chemical burn-induced CorNV. In chemical burn-induced CorNV in C57BL/6J mice, however, they were down-regulated at day 6. Corneal crystallins were down-regulated in both CorNV models at all time points in both BALB/c and C57BL/6J mice. Comparison of CorNV development in αA-crystallin-deficient mice and that in wild-type mice revealed no significant difference. Subconjunctival injection of αA-crystallin significantly attenuated suture-induced CorNV, and the inhibitory activity might be implemented by the increased expression of soluble VEGFR-1. In conclusion, the expression patterns of lens crystallins were time- and strain-dependent but different from that of corneal crystallins in mouse CorNV models. Exogenous αA-crystallin protein attenuated CorNV, potentially by increasing the expression of soluble VEGFR-1.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (205 K)Download as PowerPoint slideHighlights► Lens and corneal crystallins show different changes in CorNV. ► Lens crystallins expressions in CorNV depend on strains, time and inducers. ► Exogenous aA-crystallins hinder development of CorNV.

Related Topics
Life Sciences Immunology and Microbiology Immunology and Microbiology (General)
Authors
, , , , , ,