Article ID Journal Published Year Pages File Type
4012033 Experimental Eye Research 2010 15 Pages PDF
Abstract

We previously reported that lacrimal glands (LGs) of male non-obese diabetic (NOD) mice, an established mouse model of autoimmune inflammatory LG disease that displays many features of human LGs in patients afflicted with Sjögren's syndrome (SjS), exhibit significant degradation of extracellular matrix (ECM) structures as well as increased expression of matrix metalloproteinases (MMPs). The purpose of the current study was to expand the spectrum of proteases identified, to clarify their probable origin as well as to identify the contribution of these changes to disease pathogenesis. We explored in depth the changes in ECM structures and ECM protease expression at the onset of disease (6 weeks) versus late stage disease (18 weeks) in male NOD mouse LGs, relative to LGs of age-matched male NODscid, a severely immunocompromised congenic strain, and healthy BALB/c mice. LG tissues were examined using routine histological, immunohistochemical, Western Blot and gene expression analyses novel multiphoton imaging technologies. We further characterized the profile of infiltrating immune cells under each condition using flow cytometry. Our results show that the initial infiltrating cells at 6 weeks of age are responsible for increased MMP and cathepsin H expression and therefore initiate the LG ECM degradation in NOD mice. More importantly, NODscid mice exhibited normal LG ECM structures, indicating the lymphocytes seen in the LGs of NOD mice are responsible for the degradation of the LG ECM. The disease-related remodeling of LG ECM structures may play a crucial role in altering the acinar signaling environment, disrupting the signaling scaffolds within the cells, which are required to mobilize the exocytotic trafficking machinery, ultimately leading to a loss of LG function in patients afflicted with SjS.

Related Topics
Life Sciences Immunology and Microbiology Immunology and Microbiology (General)
Authors
, , , , , , , , ,