Article ID Journal Published Year Pages File Type
4012135 Experimental Eye Research 2009 8 Pages PDF
Abstract

The use of Synthetic Amphiphile INTeraction-18 (SAINT-18) carrying plasmid pigment epithelium-derived factor (p-PEDF) as an anti-angiogenesis strategy to treat corneal neovascularization in a rat model was evaluated. Four partially dried forms (Group A: 0 μg, B: 0.1 μg, C: 1 μg, D: 10 μg) of a p-PEDF–SAINT-18 were prepared and implanted into the rat subconjunctival substantia propria 1.5 mm from the limbus at the temporal side. The 1 μg of plasmid-basic fibroblast growth factor–-SAINT-18 (p-bFGF–SAINT-18) (1 μg) was prepared and implanted into the rat corneal stroma 1.5 mm from the limbus on the same side. Inhibition of neovascularization was observed and quantified from day 1 to day 60. PEDF (50-kDa) and bFGF (18-kDa) protein expression were analyzed by biomicroscopic examination, Western blot analysis, and immunohistochemistry. Gene expression in corneal and conjunctival tissue was observed as early as 3 days after gene transfer and stably lasted for over 3 months with minimal immune reaction. Subconjunctival injection of a highly efficient p-PEDF–SAINT-18 successfully inhibited corneal neovascularization. Successful gene expression of bFGF, PEDF and a mild immune response of HLA-DR were shown by immunohistochemistry staining. We concluded that SAINT-18 was capable of directly delivering genes to the ocular surface by way of subconjunctival injection, and delivered sustained, high levels of gene expression in vivo to inhibit angiogenesis.

Related Topics
Life Sciences Immunology and Microbiology Immunology and Microbiology (General)
Authors
, , , , , , , , , , , ,