Article ID Journal Published Year Pages File Type
401407 Journal of Symbolic Computation 2009 17 Pages PDF
Abstract

We study arithmetic operations for triangular families of polynomials, concentrating on multiplication in dimension zero. By a suitable extension of fast univariate Euclidean division, we obtain theoretical and practical improvements over a direct recursive approach; for a family of special cases, we reach quasi-linear complexity. The main outcome we have in mind is the acceleration of higher-level algorithms, by interfacing our low-level implementation with languages such as AXIOM or Maple. We show the potential for huge speed-ups, by comparing two AXIOM implementations of van Hoeij and Monagan’s modular GCD algorithm.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence