Article ID Journal Published Year Pages File Type
401580 Journal of Symbolic Computation 2013 15 Pages PDF
Abstract

Important subalgebras of a Lie algebra of an algebraic group are its toral subalgebras, or equivalently (over fields of characteristic 0) its Cartan subalgebras. Of great importance among these are ones that are split: their action on the Lie algebra splits completely over the field of definition. While algorithms to compute split maximal toral subalgebras exist and have been implemented (Ryba, 2007; Cohen and Murray, 2009), these algorithms fail when the Lie algebra is defined over a field of characteristic 2 or 3.We present heuristic algorithms that, given a reductive Lie algebra L over a finite field of characteristic 2 or 3, find a split maximal toral subalgebra of L. Together with earlier work (Cohen and Roozemond, 2009) these algorithms are very useful for the recognition of reductive Lie algebras over such fields.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence