Article ID Journal Published Year Pages File Type
401671 Journal of Symbolic Computation 2010 22 Pages PDF
Abstract

Interpolation is an important component of recent methods for program verification. It provides a natural and effective means for computing the separation between the sets of ‘good’ and ‘bad’ states. The existing algorithms for interpolant generation are proof-based: They require explicit construction of proofs, from which interpolants can be computed. Construction of such proofs is a difficult task. We propose an algorithm for the generation of interpolants for the combined theory of linear arithmetic and uninterpreted function symbols that does not require a priori constructed proofs to derive interpolants. It uses a reduction of the problem to constraint solving in linear arithmetic, which allows application of existing highly optimized Linear Programming solvers in a black-box fashion. We provide experimental evidence of the practical applicability of our algorithm.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence