Article ID Journal Published Year Pages File Type
401846 Journal of Symbolic Computation 2010 32 Pages PDF
Abstract

The topic of this article is decision procedures for satisfiability modulo theories (SMT) of arbitrary quantifier-free formulæ. We propose an approach that decomposes the formula in such a way that its definitional part, including the theory, can be compiled by a rewrite-based first-order theorem prover, and the residual problem can be decided by an SMT-solver, based on the Davis–Putnam–Logemann–Loveland procedure. The resulting decision by stages mechanism may unite the complementary strengths of first-order provers and SMT-solvers. We demonstrate its practicality by giving decision procedures for the theories of records, integer offsets and arrays, with or without extensionality, and for combinations including such theories.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence