Article ID Journal Published Year Pages File Type
402002 International Journal of Human-Computer Studies 2011 12 Pages PDF
Abstract

The law of path steering, as proposed by Accot and Zhai, describes a quantitative relationship between the human temporal performance and the path spatial characteristics. The steering law is formulated as a continuous goal-crossing task, in which a large number of goals are crossed along the path. The steering law has been verified empirically for locomotion, in which a virtual driving task through straight and circular paths was performed.We revisit the path steering law for manipulation tasks in desktop virtual environments. We have conducted controlled experiments in which users operated a pen input device to steer a virtual ball through paths of varying length, width, curvature and orientation. Our results indicate that, although the steering law provides a good description of the overall task time as a function of index of difficulty ID=L/W, where L and W are the path length and width, it does not account for other relevant factors. We specifically show that the influence of curvature can be modeled by a percentage increase in steering time, independent of index of difficulty. The path orientation relative to the viewing direction has a periodic effect on the steering time, which can be optimally described by a function of Fourier series expansions. In addition, there is also an effect of the handedness of the subjects on the steering between the left and right districts in 3D manipulation tasks.

Research Highlights► We experimentally demonstrate that the steering law provides a good description of the overall task time as a function of index of difficulty ID=L/W, where L and W are the path length and width. ► We demonstrate that the influence of path curvature can be modeled by a percentage increase in steering time, independent of index of difficulty. ► We demonstrate that the path orientation relative to the viewing direction has a periodic effect on path steering, which can be modeled with Fourier series expansions. ► We also demonstrate that subjects' handedness plays a part in the steering of paths with varying orientations.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,