Article ID Journal Published Year Pages File Type
402202 Knowledge-Based Systems 2016 11 Pages PDF
Abstract

Many previous studies on face recognition attempted to seek a precise classifier to achieve a low misclassification error, which is based on an assumption that all misclassification costs are the same. In many real-world scenarios, however, this assumption is not reasonable due to the imbalanced misclassification cost and insufficient high-quality facial image information. To address this issue, we propose a sequential three-way decision method for cost-sensitive face recognition. The proposed method is based on a formal description of granular computing. It develops a sequential strategy in a decision process. In each decision step, it seeks a decision which minimizes the misclassification cost rather than misclassification error, and it incorporates the boundary decision into the decision set such that a delayed decision can be made if available high-quality facial image information is insufficient for a precise decision. To describe the granular information of the facial image in three-way decision steps, we develop a series of image granulation methods based on two-dimensional subspace projection methods including 2DPCA, 2DLDA and 2DLPP. The sequential three-way decisions and granulation methods present an applicable simulation on human decisions in face recognition, which simulate a sequential decision strategy from rough granule to precise granule. The experiments were conducted on two popular facial image database, which validated the effectiveness of the proposed methods.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,