Article ID Journal Published Year Pages File Type
402330 Knowledge-Based Systems 2014 10 Pages PDF
Abstract

This paper proposes a semi-supervised approach based on probabilistic relaxation theory. The algorithm performs a consistent multi-class assignment of labels according to the contextual information constraints. We start from a fully connected graph where each initial sample of the input data is a node of the graph and where only a few nodes have been labelled. A local propagation process is then performed by means of a support function where a new compatibility measure has been proposed. Contributions also include a comparative study of a wide variety of data sets with recent and well-known state-of-the-art algorithms for semi-supervised learning. The results have been provided by an analysis of their statistical significance. Our methodology has demonstrated a noticeably better performance in multi-class classification tasks. Experiments will also show that the proposed technique could be especially useful for applications such as hyperspectral image classification.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,