Article ID Journal Published Year Pages File Type
402636 Knowledge-Based Systems 2010 9 Pages PDF
Abstract

This paper introduces a new learning technique for the multicriteria classification method PROAFTN. This new technique, called DEPRO, utilizes a Differential Evolution (DE) algorithm for learning and optimizing the output of the classification method PROAFTN. The limitation of the PROAFTN method is largely due to the set of parameters (e.g., intervals and weights) required to be obtained to perform the classification procedure. Therefore, a learning method is needed to induce and extract these parameters from data. DE is an efficient metaheuristic optimization algorithm based on a simple mathematical structure to mimic a complex process of evolution. Some of the advantages of DE over other global optimization methods are that it often converges faster and with more certainty than many other methods and it uses fewer control parameters. In this work, the DE algorithm is proposed to inductively obtain PROAFTN’s parameters from data to achieve a high classification accuracy. Based on results generated from 12 public datasets, DEPRO provides excellent results, outperforming the most common classification algorithms.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,