Article ID Journal Published Year Pages File Type
402993 Knowledge-Based Systems 2011 12 Pages PDF
Abstract

Association rule mining is an important data analysis method for the discovery of associations within data. There have been many studies focused on finding fuzzy association rules from transaction databases. Unfortunately, in the real world, one may have available relatively infrequent data, as well as frequent data. From infrequent data, we can find a set of rare itemsets that will be useful for teachers to find out which students need extra help in learning. While the previous association rules discovery techniques are able to discover some rules based on frequency, this is insufficient to determine the importance of a rule composed of frequency-based data items. To remedy this problem, we develop a new algorithm based on the Apriori approach to mine fuzzy specific rare itemsets from quantitative data. Finally, fuzzy association rules can be generated from these fuzzy specific rare itemsets. The patterns are useful to discover learning problems. Experimental results show that the proposed approach is able to discover interesting and valuable patterns from the survey data.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,