Article ID Journal Published Year Pages File Type
403416 Journal of Symbolic Computation 2006 11 Pages PDF
Abstract

In statistical inference, mixture models consisting of several component subpopulations are used widely to model data drawn from heterogeneous sources. In this paper, we consider maximum likelihood estimation for mixture models in which the only unknown parameters are the component proportions. By applying the theory of multivariable polynomial equations, we derive bounds for the number of isolated roots of the corresponding system of likelihood equations. If the component densities belong to certain familiar continuous exponential families, including the multivariate normal or gamma distributions, then our upper bound is, almost surely, the exact number of solutions.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence