Article ID Journal Published Year Pages File Type
404088 Neural Networks 2014 7 Pages PDF
Abstract

The Neocognitron and its related hierarchical models have been shown to be competitive in recognizing handwritten digits and objects. However, the tolerance of these models to several types of noise can be low. We will start by briefly overviewing some previous results regarding the tolerance of these models. Afterwards, we report the higher noise tolerance of the winner-take-all response in a hierarchical model over related models. We provide an analysis and interpretation of this tolerance under Bayesian decision theory. Finally, we report on how to further improve recognition for extremely noisy patterns.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,