Article ID Journal Published Year Pages File Type
404411 Neural Networks 2010 8 Pages PDF
Abstract

The efficient detection of higher-order synchronization in massively parallel data is of great importance in understanding computational processes in the cortex and represents a significant statistical challenge. To overcome the combinatorial explosion of different spike patterns taking place as the number of neurons increases, a method based on population measures would prove very useful. Following previous work in this direction, we examine the distribution of spike counts across neurons per time bin (‘complexity distribution’) and devise a method to reliably extract the size and temporal precision of synchronous groups of neurons, even in the presence of strong rate covariations.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,