Article ID Journal Published Year Pages File Type
404513 Neural Networks 2008 11 Pages PDF
Abstract

A fast prototype-based nearest neighbor classifier is introduced. The proposed Adjusted SOINN Classifier (ASC) is based on SOINN (self-organizing incremental neural network), it automatically learns the number of prototypes needed to determine the decision boundary, and learns new information without destroying old learned information. It is robust to noisy training data, and it realizes very fast classification. In the experiment, we use some artificial datasets and real-world datasets to illustrate ASC. We also compare ASC with other prototype-based classifiers with regard to its classification error, compression ratio, and speed up ratio. The results show that ASC has the best performance and it is a very efficient classifier.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,