Article ID Journal Published Year Pages File Type
404631 Neural Networks 2009 10 Pages PDF
Abstract

A novel chaotic spiking neuron is presented and its nonlinear dynamics and encoding functions are analyzed. A set of paralleled NN neurons accepts a common analog input and outputs a set of NN chaotic spike-trains. Three theorems which guarantee that the neurons can encode the analog input into a summation of the NN chaotic spike-trains are derived: (1) a spike histogram of the summed spike-train can mimic waveforms of various inputs, (2) the spike-trains do not synchronize to each other and thus the summed spike-train can have NN times higher encoding resolution than each single spike-train, and (3) firing rates of the neurons can be adjusted by internal parameters. The theorems are proven by using nonlinear iterative maps and are confirmed by numerical simulations as well. Electronic circuit implementation methods of the paralleled neurons are also presented and typical paralleled encoding functions are confirmed by both experimental measurements and SPICE simulations.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,