Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
404781 | Neural Networks | 2007 | 9 Pages |
Abstract
In this paper, without assuming strict positivity of amplifier functions, boundedness of activation functions, or symmetry of the connection matrix, dynamical behaviors of delayed Cohen–Grossberg neural networks with nonnegative equilibria are studied. Based on the theory of the nonlinear complementary problem (NCP), a sufficient condition is derived guaranteeing the existence and uniqueness of the nonnegative equilibrium in the NCP sense. Moreover, this condition also guarantees the R+n-global asymptotic stability of the nonnegative equilibrium in the first orthant. The result is compared with some previous results and numerical examples are presented to indicate the viability of our theoretical analysis.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Wenlian Lu, Tianping Chen,