Article ID Journal Published Year Pages File Type
404846 Neural Networks 2007 10 Pages PDF
Abstract

The adaptation rule of Vector Quantization algorithms, and consequently the convergence of the generated sequence, depends on the existence and properties of a function called the energy function, defined on a topological manifold. Our aim is to investigate the conditions of existence of such a function for a class of algorithms including the well-known ‘K-means’ and ‘Self-Organizing Map’ algorithms. The results presented here extend several previous studies and show that the energy function is not always a potential but at least the uniform limit of a series of potential functions which we call a pseudo-potential. It also shows that a large number of existing vector quantization algorithms developed by the Artificial Neural Networks community fall into this class. The framework we define opens the way to studying the convergence of all the corresponding adaptation rules at once, and a theorem gives promising insights in that direction.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,