Article ID Journal Published Year Pages File Type
404927 Neural Networks 2007 8 Pages PDF
Abstract

This paper presents new necessary and sufficient conditions for absolute stability of asymmetric neural networks. The main result is based on a solvable Lie algebra condition, which generalizes existing results for symmetric and normal neural networks. An exponential convergence estimate of the neural networks is also obtained. Further, it is demonstrated how to generate larger sets of weight matrices for absolute stability of the neural networks from known normal weight matrices through simple procedures. The approach is nontrivial in the sense that non-normal matrices can possibly be contained in the resulting weight matrix set. And the results also provide finite checking for robust stability of neural networks in the presence of parameter uncertainties.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,