Article ID Journal Published Year Pages File Type
404995 Neural Networks 2006 11 Pages PDF
Abstract

We introduce the Hierarchically Growing Hyperbolic Self-Organizing Map (H2SOM) featuring two extensions of the HSOM (hyperbolic SOM): (i) a hierarchically growing variant that allows for incremental training with an automated adaptation of lattice size to achieve a prescribed quantization error and (ii) an approximate best match search that utilizes the special structure of the hyperbolic lattice to achieve a tremendous speed-up for large map sizes. Using the MNIST and the Reuters-21578 database as benchmark datasets, we show that the H2SOM yields a highly efficient visualization algorithm that combines the virtues of the SOM with extremely rapid training and low quantization and classification errors.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,