Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
404998 | Neural Networks | 2006 | 5 Pages |
The kernel method has become a useful trick and has been widely applied to various learning models to extend their nonlinear approximation and classification capabilities. Such extensions have also recently occurred to the Self-Organising Map (SOM). In this paper, two recently proposed kernel SOMs are reviewed, together with their link to an energy function. The Self-Organising Mixture Network is an extension of the SOM for mixture density modelling. This paper shows that with an isotropic, density-type kernel function, the kernel SOM is equivalent to a homoscedastic Self-Organising Mixture Network, an entropy-based density estimator. This revelation on the one hand explains that kernelising SOM can improve classification performance by acquiring better probability models of the data; but on the other hand it also explains that the SOM already naturally approximates the kernel method.