Article ID Journal Published Year Pages File Type
405082 Knowledge-Based Systems 2014 14 Pages PDF
Abstract

Our work is related to the general problem of constructing predictions for decision support issues. It relies on knowledge expressed by numerous rules with homogeneous structure, extracted from various scientific publications in a specific domain. We propose a predictive approach that takes two stages: a reconciliation stage which identifies groups of rules expressing a common experimental tendency and a prediction stage which generates new rules, using both descriptions coming from experimental conditions and groups of reconciled rules obtained in stage one. The method has been tested with a case study related to food science and it has been compared to a classical approach based on decision trees. The results are promising in terms of accuracy, completeness and error rate.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,