Article ID Journal Published Year Pages File Type
4093 Biochemical Engineering Journal 2010 7 Pages PDF
Abstract

Commercially available zeolites (CBV28014, CBV901) with a high Si/Al ratio were tested as adsorbents to recover 1-butanol from aqueous solutions such as acetone–butanol–ethanol (ABE) fermentation broth. It was found that these zeolites can quickly and almost completely adsorb 1-butanol from aqueous solutions containing ∼1 wt% of 1-butanol. The binding capacity of the zeolites appeared to be around 0.12 g 1-butanol/g zeolite, and remained constant till equilibrium concentration as low as 0.04 wt% 1-butanol in water. Extrudates were prepared and tested in a column set-up to get an impression of the suitability of these zeolites for industrial applications. Extrudates of 80% zeolite and 20% alumina binder with 16–24 mesh (0.7–1.0 mm) size showed the best adsorption results in a packed bed column with up-flow of ABE broth. The adsorbent loading at 10% breakthrough was calculated to be 0.085 g 1-butanol/g zeolite (9.3 min residence time). A subsequent temperature swing leads to desorption. By choosing the temperature program carefully, it was possible to separate the water/ethanol/acetone and 1-butanol fractions. The resulting 1-butanol concentration in the 1-butanol fraction was 84.3 wt% and thus a concentration factor of 65 was achieved in one step, which is a higher value compared to other isolation techniques. Only 80% of adsorbed 1-butanol could be recovered, the remainder could only be desorbed at higher temperatures as butene. However, this should not be a problem in an industrial process as all stronger binding, catalytic sites will be blocked after the first adsorption/desorption round. A mathematical model was developed to simulate the breakthrough data and a mass transfer coefficient (kpa) of 0.052 min−1 was obtained. Comparison of simulated kpa for different sizes of extrudates clearly indicated that the adsorption rate is determined by solid phase diffusion.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,