Article ID Journal Published Year Pages File Type
411706 Robotics and Autonomous Systems 2009 7 Pages PDF
Abstract

In this paper, a dual neural network, LVI (linear variational inequalities)-based primal-dual neural network and simplified LVI-based primal-dual neural network are presented for online repetitive motion planning (RMP) of redundant robot manipulators (with a four-link planar manipulator as an example). To do this, a drift-free criterion is exploited in the form of a quadratic performance index. In addition, the repetitive-motion-planning scheme could incorporate the joint physical limits such as joint limits and joint velocity limits simultaneously. Such a scheme is finally reformulated as a quadratic program (QP). As QP real-time solvers, the aforementioned three kinds of neural networks all have piecewise-linear dynamics and could globally exponentially converge to the optimal solution of strictly-convex quadratic-programs. Furthermore, the neural-network based RMP scheme is simulated based on a four-link planar robot manipulator. Computer-simulation results substantiate the theoretical analysis and also show the effective remedy of the joint angle drift problem of robot manipulators.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,