Article ID Journal Published Year Pages File Type
412393 Robotics and Autonomous Systems 2009 12 Pages PDF
Abstract

Monte-Carlo localization uses particle filtering to estimate the position of the robot. The method is known to suffer from the loss of potential positions when there is ambiguity present in the environment. Since many indoor environments are highly symmetric, this problem of premature convergence is problematic for indoor robot navigation. It is, however, rarely studied in particle filters. We introduce a number of so-called niching methods used in genetic algorithms, and implement them on a particle filter for Monte-Carlo localization. The experiments show a significant improvement in the diversity maintaining performance of the particle filter.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,