Article ID Journal Published Year Pages File Type
4125 Biochemical Engineering Journal 2009 9 Pages PDF
Abstract

Fluorescent pseudomonad R81, a root-colonizing bacterium, is a potential bio-inoculant due to its plant growth promoting characteristics. It produces hydroxamate-type siderophore which is involved in disease suppression in plants. Genetic algorithm (GA) methodology was applied for the optimization of siderophore and cell mass production simultaneously in shake flask experiments. A total of 10 medium components were optimized within 80 experiments. A high siderophore concentration of 1.9 g/L and cell mass concentration of 2.8 g/L was achieved in the optimized medium. The application of GA was well suited for determination of optimum concentration levels of the medium constituents for a bi-objective function. GA was able to increase the siderophore concentration by 2.8-fold when compared to RSM-based optimization. Further, the batch fermentation of the GA-optimized medium in 14 L bioreactor without pH control produced 2.2 g/L siderophore in 36 h, the highest reported so far. GA was also successfully used to estimate the kinetic parameters of the mathematical models of the batch fermentation.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,