Article ID Journal Published Year Pages File Type
413305 Robotics and Autonomous Systems 2006 9 Pages PDF
Abstract

The probabilistic roadmap approach is one of the leading motion planning techniques. Over the past decade the technique has been studied by many different researchers. This has led to a large number of variants of the approach, each with its own merits. It is difficult to compare the different techniques because they were tested on different types of scenes, using different underlying libraries, implemented by different people on different machines. In this paper we provide a comparative study of a number of these techniques, all implemented in a single system and run on the same test scenes and on the same computer. In particular we compare collision checking techniques, sampling techniques, and node adding techniques. The results were surprising in the sense that techniques often performed differently than claimed by the designers. The study also showed how difficult it is to evaluate the quality of the techniques. The results should help future users of the probabilistic roadmap planning approach in deciding which technique is suitable for their situation.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,