Article ID Journal Published Year Pages File Type
413573 Robotics and Autonomous Systems 2006 10 Pages PDF
Abstract

This paper presents the design of a stable non-linear control system for the remote visual tracking of cellular robots. The robots are controlled through visual feedback based on the processing of the image captured by a fixed video camera observing the workspace. The control algorithm is based only on measurements on the image plane of the visual camera–direct visual control–thus avoiding the problems related to camera calibration. In addition, the camera plane may have any (unknown) orientation with respect to the robot workspace. The controller uses an on-line estimation of the image Jacobians. Considering the Jacobians’ estimation errors, the control system is capable of tracking a reference point moving on the image plane–defining the reference trajectory–with an ultimately bounded error. An obstacle avoidance strategy is also developed in the same context, based on the visual impedance concept. Experimental results show the performance of the overall control system.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,