Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
414345 | Computational Geometry | 2007 | 15 Pages |
Let S be a set of n moving points in the plane. We present a kinetic and dynamic (randomized) data structure for maintaining the convex hull of S. The structure uses O(n) space, and processes an expected number of O(n2βs+2(n)logn) critical events, each in O(log2n) expected time, including O(n) insertions, deletions, and changes in the flight plans of the points. Here s is the maximum number of times where any specific triple of points can become collinear, βs(q)=λs(q)/q, and λs(q) is the maximum length of Davenport–Schinzel sequences of order s on n symbols. Compared with the previous solution of Basch, Guibas and Hershberger [J. Basch, L.J. Guibas, J. Hershberger, Data structures for mobile data, J. Algorithms 31 (1999) 1–28], our structure uses simpler certificates, uses roughly the same resources, and is also dynamic.