Article ID Journal Published Year Pages File Type
414405 Computational Geometry 2009 10 Pages PDF
Abstract

We define a notion of local overlaps in polyhedron unfoldings. We use this concept to construct convex polyhedra for which certain classes of edge unfoldings contain overlaps, thereby negatively resolving some open conjectures. In particular, we construct a convex polyhedron for which every shortest path unfolding contains an overlap. We also present a convex polyhedron for which every steepest edge unfolding contains an overlap. We conclude by analyzing a broad class of unfoldings and again find a convex polyhedron for which they all contain overlaps.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics