Article ID Journal Published Year Pages File Type
414468 Computational Geometry 2006 38 Pages PDF
Abstract

The Bentley–Ottmann sweep-line method can compute the arrangement of planar curves, provided a number of geometric primitives operating on the curves are available. We discuss the reduction of the primitives to the analysis of curves and curve pairs, and describe efficient realizations of these analyses for planar algebraic curves of degree three or less. We obtain a complete, exact, and efficient algorithm for computing arrangements of cubic curves. Special cases of cubic curves are conics as well as implicitized cubic splines and Bézier curves.The algorithm is complete in that it handles all possible degeneracies such as tangential intersections and singularities. It is exact in that it provides the mathematically correct result. It is efficient in that it can handle hundreds of curves with a quarter million of segments in the final arrangement. The algorithm has been implemented in C++ as an Exacus library called CubiX.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics