Article ID Journal Published Year Pages File Type
414783 Computational Geometry 2011 10 Pages PDF
Abstract

In this paper we consider the problem of adding the smallest number of additional (relay) nodes to a network of static nodes with limited communication range so that the induced communication graph is 2-connected (we consider both edge and vertex connectivity). The problem is NP-hard. We develop algorithms that find close to optimal solutions for both edge and vertex connectivity. We prove the algorithms have an approximation ratio of 2M for nodes distributed in a d-dimensional Euclidean space, where M is the maximum node degree of a Minimum Spanning Tree in d dimensions using Euclidean metrics. In addition, our methods extend with the same approximation guarantees to a generalization when the locations of relays are required to avoid certain polygonal regions (obstacles).

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics