Article ID Journal Published Year Pages File Type
414798 Computational Geometry 2012 8 Pages PDF
Abstract

A memoryless routing algorithm is one in which the decision about the next edge on the route to a vertex t for a packet currently located at vertex v is made based only on the coordinates of v, t  , and the neighborhood, N(v)N(v), of v  . The current paper explores the limitations of such algorithms by showing that, for any (randomized) memoryless routing algorithm AA, there exists a convex subdivision on which AA takes Ω(n2)Ω(n2) expected time to route a message between some pair of vertices. Since this lower bound is matched by a random walk, this result implies that the geometric information available in convex subdivisions does not reduce the worst-case routing time for this class of routing algorithms. The current paper also shows the existence of triangulations for which the Random-Compass algorithm proposed by Bose et al. (2002, 2004) requires 2Ω(n)2Ω(n) time to route between some pair of vertices.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , ,