Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
414838 | Computational Geometry | 2011 | 6 Pages |
Abstract
Let S be a finite set of points in the Euclidean plane. Let G be a geometric graph in the plane whose point set is S. The stretch factor of G is the maximum ratio, among all points p and q in S, of the length of the shortest path from p to q in G over the Euclidean distance |pq|. Keil and Gutwin in 1989 [11] proved that the stretch factor of the Delaunay triangulation of a set of points S in the plane is at most 2π/(3cos(π/6))≈2.42. Improving on this upper bound remains an intriguing open problem in computational geometry.In this paper we consider the special case when the points in S are in convex position. We prove that in this case the stretch factor of the Delaunay triangulation of S is at most ρ=2.33.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics