Article ID Journal Published Year Pages File Type
414868 Computational Geometry 2009 12 Pages PDF
Abstract

The rectilinear shortest path problem can be stated as follows: given a set of m non-intersecting simple polygonal obstacles in the plane, find a shortest L1-metric (rectilinear) path from a point s to a point t that avoids all the obstacles. The path can touch an obstacle but does not cross it. This paper presents an algorithm with time complexity O(n+m(lgn)3/2), which is close to the known lower bound of Ω(n+mlgm) for finding such a path. Here, n is the number of vertices of all the obstacles together.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics