Article ID Journal Published Year Pages File Type
414916 Computational Geometry 2007 14 Pages PDF
Abstract

For hydrologic applications, terrain models should have few local minima, and drainage lines should coincide with edges. We show that triangulating a set of points with elevations such that the number of local minima of the resulting terrain is minimized is NP-hard for degenerate point sets. The same result applies when there are no degeneracies for higher-order Delaunay triangulations. Two heuristics are presented to reduce the number of local minima for higher-order Delaunay triangulations, which start out with the Delaunay triangulation. We give efficient algorithms for their implementation, and test on real-world data how well they perform. We also study another desirable drainage characteristic, few valley components, and how to obtain it for higher-order Delaunay triangulations. This gives rise to a third heuristic. Tables and visualizations show how the heuristics perform for the drainage characteristics on real-world data.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics