Article ID Journal Published Year Pages File Type
415205 Computational Statistics & Data Analysis 2009 10 Pages PDF
Abstract

A model-based clustering approach which contextually performs dimension reduction and variable selection is presented. Dimension reduction is achieved by assuming that the data have been generated by a linear factor model with latent variables modeled as Gaussian mixtures. Variable selection is performed by shrinking the factor loadings though a penalized likelihood method with an L1 penalty. A maximum likelihood estimation procedure via the EM algorithm is developed and a modified BIC criterion to select the penalization parameter is illustrated. The effectiveness of the proposed model is explored in a Monte Carlo simulation study and in a real example.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,