Article ID Journal Published Year Pages File Type
415640 Computational Statistics & Data Analysis 2013 15 Pages PDF
Abstract

The kernel method is a nonparametric procedure used to estimate densities with support in RR. When nonnegative data are modeled, the classical kernel density estimator presents a bias problem in the neighborhood of zero. Several methods have been developed to reduce this bias, which include the boundary kernel, data transformation and reflection methods. An alternative proposal is to use kernel estimators based on distributions with nonnegative support, as is the case of the Birnbaum–Saunders (BS), gamma, inverse Gaussian and lognormal models. Generalized BS (GBS) distributions have received considerable attention, due to their properties and their flexibility in modeling different types of data. In this paper, we propose, characterize and implement the kernel method based on GBS distributions to estimate densities with nonnegative support. In addition, we provide a simple method to choose the corresponding bandwidth. In order to evaluate the performance of these new estimators, we conduct a Monte Carlo simulation study. The obtained results are illustrated by analyzing financial real data.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , ,