Article ID Journal Published Year Pages File Type
415754 Computational Statistics & Data Analysis 2006 25 Pages PDF
Abstract

Two dimensional reduction regression methods to predict a scalar response from a discretized sample path of a continuous time covariate process are presented. The methods take into account the functional nature of the predictor and are both based on appropriate wavelet decompositions. Using such decompositions, prediction methods are devised that are similar to minimum average variance estimation (MAVE) or functional sliced inverse regression (FSIR). Their practical implementation is described, together with their application both to simulated and on real data analyzing three calibration examples of near infrared spectra.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,