Article ID Journal Published Year Pages File Type
415887 Computational Statistics & Data Analysis 2011 17 Pages PDF
Abstract

The classical model selection criteria, such as the Bayesian Information Criterion (BIC) or Akaike information criterion (AIC), have a strong tendency to overestimate the number of regressors when the search is performed over a large number of potential explanatory variables. To handle the problem of the overestimation, several modifications of the BIC have been proposed. These versions rely on supplementing the original BIC with some prior distributions on the class of possible models. Three such modifications are presented and compared in the context of sparse Generalized Linear Models (GLMs). The related choices of priors are discussed and the conditions for the asymptotic equivalence of these criteria are provided. The performance of the modified versions of the BIC is illustrated with an extensive simulation study and a real data analysis. Also, simplified versions of the modified BIC, based on least squares regression, are investigated.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,