Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
415902 | Computational Geometry | 2006 | 15 Pages |
Abstract
Finding the closest or farthest line segment (line) from a point are fundamental proximity problems. Given a set S of n points in the plane and another point q, we present optimal O(nlogn) time, O(n) space algorithms for finding the closest and farthest line segments (lines) from q among those spanned by the points in S. We further show how to apply our techniques to find the minimum (maximum) area triangle with a vertex at q and the other two vertices in S∖{q} in optimal O(nlogn) time and O(n) space. Finally, we give an O(nlogn) time, O(n) space algorithm to find the kth closest line from q and show how to find the k closest lines from q in O(nlogn+k) time and O(n+k) space.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics