Article ID Journal Published Year Pages File Type
416013 Computational Statistics & Data Analysis 2010 19 Pages PDF
Abstract

Many pattern classification algorithms such as Support Vector Machines (SVMs), Multi-Layer Perceptrons (MLPs), and K-Nearest Neighbors (KNNs) require data to consist of purely numerical variables. However many real world data consist of both categorical and numerical variables. In this paper we suggest an effective method of converting the mixed data of categorical and numerical variables into data of purely numerical variables for binary classifications. Since the suggested method is based on the theory of learning Bayesian Network Classifiers (BNCs), it is computationally efficient and robust to noises and data losses. Also the suggested method is expected to extract sufficient information for estimating a minimum-error-rate (MER) classifier. Simulations on artificial data sets and real world data sets are conducted to demonstrate the competitiveness of the suggested method when the number of values in each categorical variable is large and BNCs accurately model the data.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,