Article ID Journal Published Year Pages File Type
416050 Computational Statistics & Data Analysis 2009 16 Pages PDF
Abstract

The per capita ecological footprint (EF) is one of the most-widely recognized measures of environmental sustainability. It seeks to quantify the Earth’s biological capacity required to support human activity. This study uses three neuro-computational methodologies: multi-layer perceptron neural network (MLP), probabilistic neural network (PNN) and generalized regression neural network (GRNN) to predict and classify the EF of 140 nations. Accuracy indices are used to assess the prediction and classification accuracy of the three methodologies. The study shows that neuro-computational models outperform traditional statistical techniques such as regression analysis and discriminant analysis in predicting and classifying per capita EF due to their robustness and flexibility of modeling algorithms.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,