Article ID Journal Published Year Pages File Type
416346 Computational Statistics & Data Analysis 2006 19 Pages PDF
Abstract

Multidimensional scaling (MDS) is a collection of data analytic techniques for constructing configurations of points from dissimilarity information about interpoint distances. Classsical MDS assumes a fixed matrix of dissimilarities. However, in some applications, e.g., the problem of inferring 3-dimensional molecular structure from bounds on interatomic distances, the dissimilarities are free to vary, resulting in optimization problems with a spectral objective function. A perturbation analysis is used to compute first- and second-order directional derivatives of this function. The gradient and Hessian are then inferred as representers of the derivatives. This coordinate-free approach reveals the matrix structure of the objective and facilitates writing customized optimization software. Also analyzed is the spectrum of the Hessian of the objective.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,