Article ID Journal Published Year Pages File Type
416384 Computational Statistics & Data Analysis 2016 17 Pages PDF
Abstract

Empirical researchers are often faced with the need to model proportional data in many fields such as econometrics, finance and biostatistics. In this paper, we study a robust and flexible modeling of proportional data using quasi-likelihood method with partially linear single-index structure. Bias-corrected estimating equations are developed to fit the model with the nonparametric function being approximated by polynomial splines. The theoretical properties of the estimators are established. In addition, we apply the regularization approach to simultaneously select significant variables and estimate unknown parameters, and the resulting penalized estimators are shown to have the oracle property. Extensive simulation studies and an empirical example are used to illustrate the usefulness of the newly proposed methods.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , ,