Article ID Journal Published Year Pages File Type
416705 Computational Statistics & Data Analysis 2006 13 Pages PDF
Abstract

Density-based clustering algorithms for multivariate data often have difficulties with high-dimensional data and clusters of very different densities. A new density-based clustering algorithm, called KNNCLUST, is presented in this paper that is able to tackle these situations. It is based on the combination of nonparametric k-nearest-neighbor (KNN) and kernel (KNN-kernel) density estimation. The KNN-kernel density estimation technique makes it possible to model clusters of different densities in high-dimensional data sets. Moreover, the number of clusters is identified automatically by the algorithm. KNNCLUST is tested using simulated data and applied to a multispectral compact airborne spectrographic imager (CASI)_image of a floodplain in the Netherlands to illustrate the characteristics of the method.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,